
Introduction

DII COE I&RTS: Rev 3.0 January 1997 1-1

1. Introduction

The C4I For the Warrior (C4IFTW) vision has been stated as follows:

The Warrior needs a fused, real-time, true-picture of the battlespace and
the ability to order, respond, and coordinate vertically and horizontally to
the degree necessary to prosecute the mission in that battlespace.

This broad visionary statement demonstrates that an unprecedented degree of integration
and interoperability is required of DOD systems, both for legacy systems and for systems
that are under construction. The Defense Information Infrastructure (DII) Common
Operating Environment (COE) is the key to achieving this vision.

The DII COE1 originated with a simple observation about command and control systems:
certain functions (mapping, track management, communication interfaces, etc.) are so
fundamental that they are required for virtually every command and control system. Yet
these functions are built over and over again in incompatible ways even when the
requirements are the same, or vary only slightly, between systems. If these common
functions could be extracted, implemented as a set of extensible low-level building blocks,
and made readily available to system designers, development schedules could be
accelerated and substantial savings could be achieved through software reuse. Moreover,
interoperability would be significantly improved because common software is used across
systems for common functions, and the functional capability only needs to be built
correctly once rather than over and over again for each project.

This observation led to the development of the DII COE. Although its roots are in the C4I
arena, the DII COE and its principles are not unique to C4I. The DII COE has been
expanded to encompass a range of other functional areas including logistics,
transportation, base support, personnel, health affairs, and finance. All new DISA systems
are being built using the DII COE while existing DISA systems are being migrated to use
the DII COE. OSD has recently issued a directive2 that all new military systems, except
for weapon control systems, shall use the DII COE.

Three representative DISA systems that use the DII COE are the Global Command and
Control System (GCCS), the Global Combat Support System (GCSS), and the Electronic
Commerce Processing Node (ECPN) system. All three systems use the same infrastructure
and integration approach, and the same COE components for functions that are common
between the systems.

GCCS is a C4I system that began with two main objectives: replacement of the World-
Wide Military Command and Control System (WWMCCS) and implementation of the C4I
For the Warrior concept (C4IFTW). Functionally, as a C4I For the Warrior system, GCCS

1 The acronyms “DII COE” and “COE” are used interchangeably throughout this document. Other COEs
exist (such as the JMCIS COE) which are very similar in scope or implementation with the DII COE. To
avoid confusion, unless otherwise indicated, “COE” always refers to the DISA DII COE.
2 OSD Directive dated 30 August 1996 (Subject: Implementation of the DOD Joint Technical
Architecture).

Introduction

1-2 January 1997 DII COE I&RTS: Rev 3.0

includes multiple workstations cooperating in a distributed LAN/WAN environment. Key
features include “push/pull” data exchange, data processing, sensor fusion, dynamic
situation display, analysis and briefing support, and maintenance of a common tactical
picture among distributed GCCS sites. GCCS is already fielded at a number of operational
CINCs. In calendar year 1996 GCCS completed the first objective by replacing all
WWMCCS systems. Attention is now being devoted to enhancing GCCS to more
completely realize the C4IFTW concept. An important step in this evolution is to integrate
GCCS and GCSS in a seamless way to provide the warrior with C4I capabilities and
reachback to the CONUS sustaining base infrastructure.

GCSS is under development and is targeted for the warfighting support functions
(logistics, transportation, etc.) to provide a system that is fully interoperable with the
warfighter C4I system. Implemented to its fullest potential, GCSS will provide both
warfighter support (including reachback from deployed commanders into the CONUS
sustaining base infrastructure) and cross-functional integration on a single workstation
platform.

ECPN is also under development and is to provide the foundation for paper-less exchange
of business information, including funds transfer, using electronic media. ECPN is
important in the history of the DII COE because it represents a radically different
application than either GCCS or GCSS. This demonstrates the fact that the DII COE
principles are mission-domain independent.

The DII COE is described more completely in later chapters of this document as is
technical information required to properly access and extend software contained within the
COE. The concepts herein represent the culmination of open systems evolutionary
development from both industry and government with contributions from each of the
services and several agencies. The resulting COE architecture is an innovative framework
for designing and building military systems. Because it reuses software contributed by
service/agency programs, it utilizes field-proven software for common functions. The
engineering procedures for adding new capabilities and integrating systems are mature and
have been used for several production releases. The end result is a strategy for fielding
systems with increased interoperability, reduced development time, increased operational
capability, minimized technical obsolescence, minimal training requirements, and
minimized life-cycle costs.

A Brief History of the DII COE

DII COE I&RTS: Rev 3.0 January 1997 1-3

1.1 A Brief History of the DII COE

Initial DII COE development was driven by a near-term requirement to build a suitable
WWMCCS replacement. WWMCCS maintenance costs were significant and the system
had reached the point of technical obsolescence. A significant aspect of the COE
challenge, which was successfully met for WWMCCS with GCCS, is to strategically
position the architecture so as to be able to take advantage of technological advances. At
the same time, the system must not sacrifice quality, stability, or functionality already in
the hands of the warrior. In keeping with current DOD trends, the COE emphasizes use of
commercial products and standards where applicable to leverage investments made by
commercial industry.

To achieve the near-term WWMCCS replacement objective, technical experts and
program managers from each of the services, the intelligence community, the Defense
Mapping Agency (DMA), and other interested agencies met for several months beginning
in the fall of 1993. Participants proposed candidate systems as a possible starting point for
a COE architecture or as a suitable candidate for providing capabilities to meet
WWMCCS replacement requirements. None of the candidate systems met all
requirements, but it was clear that a combination of the “best” from several systems could
produce a near-term system that would be suitable for WWMCCS replacement.
Moreover, an infrastructure could be put into place and a migration strategy defined to
preserve legacy systems until migration to the intended architecture could be realized.

The cornerstone architectural concept jointly developed during that series of meetings was
the GCCS COE. This initial COE was limited in scope to address the immediate C4I
problem (i.e., WWMCCS replacement), but its principles, structure, and foundation
deliberately went far beyond just the C4I mission domain. The GCCS COE was composed
of software contributed from several candidate systems evaluated by this original joint
engineering team.

An initial proof-of-concept system, GCCS 1.0, was created and installed in early 1994 at
one operational site to validate the approach and to receive early feedback. GCCS 1.1
followed in the summer of 1994 and was the first attempt to integrate software from the
Army AWIS and Navy JMCIS programs as initial GCCS COE components. GCCS 1.1
included mission applications from a variety of other programs operating in a “federated”
mode. That is, the mission applications were integrated together so as to be able to run on
the same hardware without interfering with each other, but not yet able to effectively share
data between applications. This successful effort allowed GCCS 1.1 to be installed and
tested at beta sites and was used at certain operational sites to monitor events during the
1994 Haiti crisis. GCCS 2.0 fielding began in early 1995 at a number of operational sites.
GCCS 2.1 was fielded in mid-1995 and by mid-1996 had successfully replaced
WWMCCS. A prototype version of GCCS 2.2 was the basis for JWID 95 and a
refinement of it was the basis for JWID 96. The rapid prototyping capability of the GCCS
COE allowed another GCCS 2.2 enhancement to be placed in theater to support Bosnia
operations and for contingency planning when tensions in the Gulf area increased in
mid-1996.

A Brief History of the DII COE

1-4 January 1997 DII COE I&RTS: Rev 3.0

Starting in mid-1995, because GCCS was well underway, technical experts again met
under DISA guidance to expand the GCCS COE into the DII COE. The result is a COE
that contains all of the original GCCS COE functionality and that is backwards
compatible. But the DII COE is was expanded to include global data management and
workflow management for GCSS logistics applications and to address other mission
domains. Much of the original software has been updated to take advantage of further
technological advances and Commercial Off-the-Shelf (COTS) software has replaced
some of the original Government Off-the-Shelf (GOTS) components. From this historical
perspective, the GCCS COE can be viewed as a proper subset of the much larger DII
COE.

Development of the present version of the I&RTS and DII COE began in early 1996. It
builds upon its predecessor by adding new capabilities to address Web-based applications
and to recognize the increasing importance of database issues in building interoperable
systems. The Shared Data Environment (SHADE) is a major new addition to the COE to
improve interoperability at the data level, to allow data sharing, and to reduce data
integration conflicts.

Although GCCS succeeded in replacing the aged WWMCCS, it is important to realize
that GCCS is far more than just a WWMCCS replacement. The GCCS system:

• provided more capability than users had before,
• modernized the human/computer interface to simplify training,
• greatly increased the “jointness” of the system,
• increased the suite of tools warriors could use in executing their mission, and
• met many of the requirements for generating a fused view of the Joint Battlespace.

Perhaps more importantly, GCCS is a milestone that demonstrates that the DII COE
concept is crucial in being able to rapidly integrate software from candidate programs to
successfully build a baseline with an ever-increasing level of functionality. And the DII
COE provides the mechanism for rapidly placing these capabilities into the hands of the
warrior. GCCS is presently being migrated to the new DII COE 3.0.

The DII COE has its roots in command and control, but the principles and implementation
described in this document are not unique to GCCS or GCSS. The principles and
implementation are not limited to command and control or logistics applications but are
readily applicable to many other application areas. The specific software components
selected for inclusion in the COE determine the mission areas that the COE can address.
Work is ongoing to refine and optimize the components in the COE and to further
populate the COE with software required for Electronic Commerce/Electronic Data
Interchange (EC/EDI), transportation, base support, personnel, health affairs, and finance
applications. Work is also ongoing to take advantage of new technology advances, such as
Web and CORBA, which provide new technology infusion to ensure system longevity.
Efforts in data and security are ongoing to complete the goal of true interoperability while
not introducing undue security risks. Backwards compatibility is a fundamental tenet of
the COE and significant effort is expended to preserve legacy investments. Systems which

A Brief History of the DII COE

DII COE I&RTS: Rev 3.0 January 1997 1-5

migrate to the DII COE now are protected by the backwards compatibility guarantee as
future COE versions are released so that upgrading from one COE version to the next is
less difficult than most commercial counterparts.

The DII COE Concept

1-6 January 1997 DII COE I&RTS: Rev 3.0

1.2 The DII COE Concept

The DII COE concept is a fundamentally new approach that is much broader in scope than
simple software reuse. Software reuse itself is not a new idea. Unfortunately, most
software reuse approaches to date have been less than satisfactory. Reuse approaches have
generally emphasized the development of a large software repository from which designers
may pick and choose modules or elect to rebuild modules from scratch. It is not sufficient
to have a large repository, and too much freedom of choice leads to interoperability
problems and duplication of effort. This rapidly negates the advantages of software reuse.

Software reuse strategies have also ignored the importance of data reuse. The approach
has traditionally been to encapsulate data into a relational database from which
applications may retrieve the data according to their own view (i.e., schema). While this
approach was a tremendous advance, it fell short of the goal of providing truly
interoperable systems in the joint arena. What is required is an approach that promotes
data sharing within systems and between systems. The approach must also recognize and
resolve the issues of duplicative data, inconsistencies in the data, and data replication.
SHADE is the data reuse strategy for the DII COE.

The DII COE emphasizes both software reuse and data reuse and interoperability for both
data and software. But its principles are more far reaching and innovative. The COE
concept encompasses:

• an architecture and approach for building interoperable systems,
• an environment for sharing data between applications and systems,
• an infrastructure for supporting mission-area applications,
• a rigorous definition of the runtime execution environment,
• a reference implementation on which systems can be built,
• a collection of reusable software components and data,
• a rigorous set of requirements for achieving DII3 compliance,
• an automated toolset for enforcing COE principles and measuring DII compliance,
• an automated process for software integration,
• an approach and methodology for software and data reuse,
• a set of Application Program Interfaces (APIs) for accessing COE components, and
• an electronic process for submitting/retrieving software and data to/from the DII

repository.

This document is first and foremost a Computer Science document that describes how
modules must interact in the target system. System architects and software developers
retain considerable freedom in building the system, but runtime environmental conflicts
and data conflicts are identified and resolved through automated tools that enforce COE

3 The term “DII compliance” is preferred instead of “COE compliance” and is used throughout the
I&RTS. The compliance concept and approach has not changed, but compliance is measured for segments
within the COE as well as mission-application segments that lie outside the COE. Therefore, “DII
compliance” is more descriptive and correct than “COE compliance.”

The DII COE Concept

DII COE I&RTS: Rev 3.0 January 1997 1-7

principles. An important side effect is that traditional integration tasks largely become the
responsibility of the developer. Developers are required to integrate and test their software
within the COE prior to delivering it to the government. This simplifies integration
because those who best understand the software design (the original developers) perform
it, it reduces the cost because integration is performed earlier and at a lower level in the
process, and it allows the government to concentrate on validation instead of integration.

In the context of this document, the COE must be understood as a multi-faceted concept.
Proper understanding of how the many facets interact is important in appreciating the
scope and power of the DII COE and in avoiding confusion in understanding COE
material. The next subsection deals with four specific facets in more detail:

• the COE as a system foundation,
• the COE as an architecture,
• the COE as a reference implementation, and
• the COE as an implementation strategy.

Failure to understand these facets will lead to confusion and non-compliant systems.

1. To view the COE as a C4I system is incorrect because it misses the fundamental point
that the COE is not a system; it is a foundation for building an open system. This
viewpoint makes fielding and update schedules confusing because it fails to account
for the impact of the evolutionary development strategy.

2. To view the COE as GCCS or just an architecture for C4I systems gives the mistaken

impression that its principles are limited to the GCCS program or to command and
control applications. GCCS is simply the first system build on top of the DII COE.

3. To view the COE as just a recommendation fails to account for the fact that a baseline

reference implementation already exists. The baseline is composed of components
selected from mature service/agency programs. Such a limiting view leads to the
erroneous assumption that the COE is merely a set of guidelines when in fact the DII
COE is both a set of standards and specifications, and a set of pre-built components
that implement those standards and specifications.

4. Finally, to view the COE as just an implementation strategy is a limited perspective

because it fails to account for the fact that its near-term development is driven by real-
world objectives and schedule priorities to meet service/agency commitments. Long-
term COE strategy is driven by technology and mission requirements, but near-term
fielding schedules ensure that immature technology is not introduced before it is ready.
However, short-sighted decisions that may preclude taking advantage of new
technology advances are avoided. This limited view also ignores the evolutionary
nature of the COE and mission-applications development and it ignores the derived
requirement to provide an easy update mechanism for operational sites.

The DII COE Concept

1-8 January 1997 DII COE I&RTS: Rev 3.0

1.2.1 The DII COE as a System Foundation

Figure 1-1 is a greatly simplified diagram that shows how the DII COE serves as a
foundation for building multiple systems. Details such as specific COE components,
databases, and the internal structure of the COE have been omitted for clarity. Chapter 2
provides this level of information and describes the COE in much more detail. The
purpose of Figure 1-1 is just to introduce the concept.

GCCS GCSS ECPN Other

COE Based Systems

R
eu

sa
bl

e
So

ft
w

ar
e

H/W Platform

Standard Application Program Interfaces

COE Components

Operating System Services

DII COE

Standards
•I&RTS
•Style Guide
•POSIX
•TAFIM
•JTA

Figure 1-1: DII COE and COE-Based Systems

The shaded box in Figure 1-1 shows two types of reusable software: the operating system
and COE components. For the present discussion, it is sufficient to note that COE
components are accessed through APIs and that the COE components form the
architectural backbone of the target system. The API is the means through which a system
permits a programmer to develop applications through interaction with the underlying
COE. A set of standards (POSIX in the diagram) and specifications (TAFIM, JTA, I&RTS,
and Style Guide in the diagram) dictate how COE components are to be built and how
external components must be built to be compliant with the COE architecture.

The DII COE Concept

DII COE I&RTS: Rev 3.0 January 1997 1-9

Building a target system, such as GCCS or GCSS, is largely a matter of combining COE
components with mission-specific software. The COE infrastructure manages the flow of
data through the system, both internally and externally. Mission-specific software is mostly
concerned with requesting data from the COE and then presenting it in a form that is most
meaningful to the operator (e.g., as a pie chart, in tabular form, as a graph). The COE
provides the necessary primitives for such data manipulation and has the necessary
information about where the requested data is stored, whether locally or remotely across
the LAN/WAN. This frees the system designer to concentrate on meaningful data
presentation and not on the mechanics of data manipulation, network communications,
database storage, etc.

It must be kept in mind, however, that there is only one COE regardless of the target
system. The COE is a set of building blocks. System designers select those building blocks
required for their mission application, while excluding building blocks that are not
required. Each derived system uses the same set of APIs to access common COE
components, the same approach to integration, and the same set of tools for enforcing
COE principles. For common functions (e.g., communications interfaces, dataflow
management), each target system uses precisely the same COE software components from
the reference implementation. Compliant systems do not implement their own versions of
algorithms within the COE because this will rapidly lead to interoperability problems as
algorithms are interpreted differently or because systems fail to upgrade algorithms at the
same time. This approach to software reuse significantly reduces interoperability problems
because if the same software is used, it is not possible to have two systems that interpret
or implement standards differently.

The next subsection describes the features of a few, selected systems. They are presented
as examples of COE-based systems to demonstrate the flexibility of the COE, and to
demonstrate the potential for a much higher degree of interoperability between systems
than ever before.

1.2.1.1 GCCS as a COE-Based System

GCCS is a system specifically designed to meet C4I requirements of the warrior at various
echelons within the command structure. It consists of geographically distributed
workstations inter-connected via LAN/WAN technologies on a classified network called
the SIPRNET (Secret Internet Protocol Router Network). The features provided and the
LAN/WAN topology allow warriors to collaboratively share mission responsibilities.
Collaborative planning is possible in areas as diverse as creating Time-Phased Force and
Deployment Data (TPFDD), distributing Air Tasking Orders (ATO), performing
intelligence analysis, and maintaining a common view of the battlefield with up-to-date
display of the deployment of all joint and enemy forces.

The GCCS system provides a suite of capabilities across a number of areas that include the
following:

The DII COE Concept

1-10 January 1997 DII COE I&RTS: Rev 3.0

• Manpower Requirements Analysis • Transportation Planning
• Force Planning • Resource Management
• Collaborative Mission Planning • Fuel Resource Planning
• All Source Data Fusion & Correlation • Teleconferencing
• Office Automation • Scheduling and Movement
• Logistics Support • Medical Planning
• Status of Readiness Reports • Intelligence Analysis
• Cartographic and Imagery • Communications and Message

Display and Analysis Handling

The sheer magnitude and capability of GCCS can quickly overwhelm even the most
experienced operators. However, the COE provides system administration tools to allow
site administrators to selectively install only those software applications required for the
site. This minimizes hardware requirements and simplifies site administration. Site
administrators can further tailor the installation so that operators are given access to only
those applications that pertain to their mission area or for which they have the proper
clearances. GCCS allows an operator to access any authorized function from any
workstation so that privileges are tied to the operator, not a specific workstation.

Software updates are periodically made available as new capabilities are developed, or as
software patches are created to fix problems. Site administrators can receive these updates
via tapes, or electronically across the SIPRNET. Electronic updates are available in either
a “push” mode (i.e., the update process is initiated electronically by a DISA Software
Support Activity) or a “pull” mode (i.e., the update process is initiated electronically by
the operational site).

1.2.1.2 GCSS as a COE-Based System

GCSS is designed to fulfill warfighter acquisition and logistics support functions. As with
GCCS, the system consists of geographically distributed workstations inter-connected via
LAN/WAN technologies. While GCCS is on a classified network (SIPRNET), GCSS will
be primarily on an unclassified network (NIPRNET) with direct connectivity to the
Internet. Operators have shared access to technical manuals, drawings, Engineering
Change Proposals (ECPs), and status of work in progress regardless of their geographic
location. This collaborative feature of GCSS is similar to the teleconferencing capability of
GCCS and is supported by the same COE infrastructure. The GCSS system effectively
integrates people and organizations, data and information, and work processes across the
enterprise.

GCSS provides a comprehensive suite of capabilities related to the acquisition process,
and to logistics support. Many of the capabilities, such as office automation, are identical
to GCCS and hence use the same COE components. Other requirements, such as the need
to support the CALS standard, are unique to GCSS. Major features include the following:

The DII COE Concept

DII COE I&RTS: Rev 3.0 January 1997 1-11

• Engineering Drawings Support • Training Plans
• Depot Maintenance Support • Reliability Data Management
• Materiel Management • Configuration Management
• Technical Orders • Teleconferencing
• Workflow Management and Metrics • Office Automation
• Pert Charts • CALS Support
• Logistics Support Analysis • Cost and Schedule Tracking
• Access to Non-destructive Imaging Data

GCSS uses the same COE system administration tools as GCCS to allow site
administrators to selectively install only those software applications required for the site.
This minimizes hardware requirements and simplifies site administration. Site
administrators can further tailor the installation so that operators are given access to only
those applications that pertain to their area of responsibility.

Software updates are periodically made available as new capabilities are developed, or as
software patches are created to fix problems. Site administrators can receive these updates
via tapes, or electronically across the NIPRNET.

1.2.1.3 ECPN as a COE-Based System

The EC/EDI goal is to automate the procurement process from the point a Request for
Quotation is issued by the government, through contract award, through issuance of
Purchase Orders, and through actual billing and payment. This requires integration of
Accounting, Receiving, Manufacturing, Purchasing, Shipping, and Sales departments in a
seamless information backbone. Presently under development, ECPN is the first step in the
overall strategy. ECPN is a far reaching modernization effort that greatly simplifies the
procurement process through electronic exchange of business data.

ECPN shares several requirements, such as office automation, with both GCCS and
GCSS. Moreover, it is being built with the same architectural infrastructure, development
methodology, site administration, and basic building blocks for communications and data
exchange as GCCS and GCSS. Many of the requirements, such as specific message
formats, are unique to the EC/EDI commercial world.

ECPN is important in the evolution of the DII COE for several reasons.

• It requires interfacing with commercial systems and vendors as well as government
systems and personnel.

• It requires guaranteed delivery and acknowledgment of receipt of critical data (e.g.,
financial transactions).

• It requires a different view of security as compared to traditional DOD usage.
Emphasis is on assurance of confidentiality of data, authenticity of the data, and
authenticity of the source of the data rather than sensitivity to classification of the data.

The DII COE Concept

1-12 January 1997 DII COE I&RTS: Rev 3.0

• It requires handling enormous data rates nation-wide. The data rates are easily in the
millions of transactions per day when fully implemented because every federal financial
transaction must be accounted for.

• It requires serious consideration of denial of service. Downtime of the system can have
enormous financial and legal ramifications.

• It requires consideration of a wide range of target platforms. ECPN processing nodes
can be specified because they are under government control at selected megacenters,
but the target hardware for commercial vendors cannot be predicted a priori. The mix
is a cross-section of hardware/software from the computer industry.

The challenges in building ECPN are sure to refine the DII COE in terms of the
components required to populate the COE and in the principles and techniques which
define the COE.

1.2.2 The DII COE as an Architecture

The DII COE is a “plug and play” open architecture designed around a client/server
model. Functionality is easily added to or removed from the target system in small
manageable units called segments. Segments are defined in terms of functions that are
meaningful to operators, not in terms of internal software structure. Structuring the
software into segments in this manner is a powerful concept that allows considerable
flexibility in configuring the system to meet specific mission needs or to minimize
hardware requirements for an operational site. Site personnel perform field updates by
replacing affected segments through use of a simple, consistent, graphically-oriented user
interface.

The DII COE model is analogous to the Microsoft Windows® paradigm. The idea is to
provide a standard environment, a set of standard off-the-shelf components, and a set of
programming standards that describe how to add new functionality to the environment.
The Windows paradigm is one of “federation of systems” in that properly designed
applications can coexist and operate in the same environment. But simple coexistence is
not enough. It must be possible for applications to share data. The DII COE extends the
Windows paradigm to allow for true “integration of systems” in that mission applications
share data at the server level.

Federation versus integration is an important architectural distinction. However,
integration is not possible without strict standards that describe how to properly build
components to add to the system. This applies equally to software functions and data. This
document and other related documents detail the technical requirements for a well-
behaved, DII-compliant application. The COE provides automated tools to measure
compliance and to pinpoint problem areas. A useful side effect of the tools and procedures
is that software integration is largely an automated process, thus significantly reducing
development time while automatically detecting potential integration and runtime problem
areas.

More precisely, to a developer the DII COE is:

The DII COE Concept

DII COE I&RTS: Rev 3.0 January 1997 1-13

• An Architecture: A precisely defined TAFIM and JTA-compliant, client/server
architecture for how system components will interact and fit together and a definition
of the system-level interface to COE components.

• A Runtime Environment: A standard runtime operating environment that includes

“look and feel,” operating system, and windowing environment standards. Since no
single runtime environment is possible in practice, the COE architecture provides
facilities for a developer to extend the environment in such a way as to not conflict
with other developers.

• A Data Environment: A standard data environment that prescribes the rules whereby
applications can share data with other applications.

• A Reference Implementation: A clearly defined set of already implemented, reusable

functions. A set of reusable software and data is a cornerstone of the DII COE
product.

• A Set of APIs: A collection of interfaces for accessing COE components. Thus, the

COE is a set of building blocks in the same sense that X Windows and Motif are
building blocks for creating an application's Graphical User Interface (GUI).

• A Set of Standards and Specifications: A set of rules that describe how to use the

COE, how to construct segments, how to create a GUI, etc.

• A Development Methodology: A process for developing, integrating, and distributing

the system and a process for sharing components with other developers. The COE
emphasizes and encourages incremental development that has the advantage of quickly
producing usable functionality.

DISA maintains the software in an online configuration management repository called
SDMS (Software Distribution Management System). This decreases the development
cycle by allowing developers to receive software updates and to submit new software
segments electronically.

1.2.3 The DII COE as a Reference Implementation

The COE necessarily includes an implementation of the components defined to be in the
COE. The reference implementation is the key to reusability and interoperability. Use of
the reference implementation provided is required to assure interoperability and is
therefore a fundamental requirement for DII compliance. The reference implementation
may change over time to take advantage of new technologies or to fix problem reports,
but incremental improvements are introduced while preserving backwards compatibility.

The DII COE Concept

1-14 January 1997 DII COE I&RTS: Rev 3.0

1.2.4 The DII COE as an Implementation Strategy

The COE is also an evolutionary acquisition and implementation strategy. This represents
a departure from traditional development programs. It emphasizes incremental
development and fielding to reduce the time required to put new functionality into the
hands of the warrior, while not sacrificing quality nor incurring unreasonable program risk
or cost. This approach is sometimes described as a “build a little - test a little - field a lot”
philosophy. It is a process of continually evolving a stable baseline to take advantage of
new technologies as they mature and to introduce new capabilities. But the changes are
done one step at a time so that the warfighters always have a stable baseline product while
changes between successive releases are perceived as slight. Evolutionary development
has become a practical necessity for many development programs because the traditional
development cycle time is longer than the technical obsolescence cycle time. This
approach allows program managers the option of taking advantage of recently developed
functions to rapidly introduce new capabilities to the field, or of synchronizing with COE
development at various points for those situations where incremental upgrades are not
readily acceptable to the customer community.

From the perspective of a COE-based system, the recommended implementation strategy
is to field new releases at frequent intervals. Each release might include enhancements to
both the COE and mission-area applications. Mission-area applications are considered to
be provisional, subject to user feedback. Applications for which feedback is favorable are
retained in subsequent releases and hardened as needed for continued operational use. As
appropriate, mission applications that are widespread in use and commonality will be
integrated into the COE or evolved to add new features.

The COE implementation strategy is carefully structured to protect functionality contained
in legacy systems so that over time they can migrate to full COE utilization. Legacy
systems must use only “public” APIs and migrate away from use of “private” APIs. Public
APIs are those interfaces to the COE that will be supported for the life cycle of the COE.
Private APIs are those interfaces that are supported for a short period of time to allow
legacy systems to migrate from unsanctioned to sanctioned APIs. All new development is
required to use only public APIs and use of any other APIs results in a non-DII compliant
segment. The process of migrating from existing legacy “stove-pipe” systems to utilize the
COE is a primary source for articulating technical requirements for the COE and it
provides program managers with information useful to establish development priorities.

From the perspective of a system developer, whether developing a new application or
migrating an existing one, the COE is an open client/server architecture that offers a
collection of services and already built modules for mission applications. Thus, the
developer's task is to assemble and customize existing components from the COE while
developing only those unique components that are peculiar to particular mission
requirements. In many if not most cases, this amounts to adding new “pull-down menu
entries and icons.”

Lessons Learned

DII COE I&RTS: Rev 3.0 January 1997 1-15

1.3 Lessons Learned

The COE as the embodiment of an architectural concept offers the opportunity to leverage
a mature, proven, field tested software base for a wide variety of applications for the
services, agencies, and Joint community. As budgets shrink and as budgetary priorities
shift, program managers require the ability to continue to respond rapidly with systems
that satisfy the information needs of United States and Allied Armed Forces. The COE
implementation strategy is a significant advancement in fulfilling this ongoing need.

Examination of state-of-the-art development in light of these realities results in a set of
fundamental tenets that greatly influence the history, future, and direction of the DII COE.
An explanation of these tenets is useful in understanding the COE as a whole.

• Pre-COE practices lead to development and redevelopment of the same functionality
across systems. Redevelopment is frequently necessary because of technological
changes as algorithms are improved or as hardware becomes faster and cheaper.
However, development cost tends to be high due to a lack of coordination between
programs that share common requirements.

• Duplication of functionality within the same system is more expensive than avoiding

duplication. Lack of coordination between program developers is a fundamental cause
for duplicative functions, but an additional factor is that reuse libraries are not
commonly available. The impact is more than just program costs. System users are
often given conflicting information even in the presence of identical data because
designers took slightly different approaches to solving the same problems or made
slightly different assumptions.

• Interoperability is not achievable through “paper” standards alone.4 Standards are

necessary, but not sufficient5 to guarantee interoperability. Interoperability problems
are generally caused, not by the standards chosen, but by differing or incorrect
interpretations of standards. System designers often choose different standards with
which to comply, but even when the standards are the same, different interpretations
of the standards can greatly change the way the resulting system operates. The COE
emphasizes use of industry and government standards, but relies even more on
automated ways of measuring and evaluating compliance, and thus quantitatively
evaluating program risk. The only practical way to achieve interoperability is to use
exactly the same software, written to appropriate standards, for common functions
across applications. For example, the COE contains a common tactical track correlator
to ensure that all users see the same tactical picture. The answer produced by the

4 This statement is not meant to minimize the importance of standards, but to state that they alone are not
sufficient to solve interoperability problems. The situation would be far more desperate in the absence of
standards.
5 The solution provided by the COE is to define specifications and a reference implementation of a
standard. For example, in the user interface area, Motif is the standard selected for Unix platforms and the
DII Style Guide is the specification written to be compliant with Motif, but tailored for the particular
mission domain.

Lessons Learned

1-16 January 1997 DII COE I&RTS: Rev 3.0

correlator may be incorrect, but it will be incorrect for all users. But this also means
that a problem correction in one place then becomes effective for all users.

• Pre-COE practices lead to exponential growth in testing and associated development

costs. Lack of commonality and modularity in system building blocks means that there
is much duplication of effort in testing basic functionality and testing in one section of
a system is often tightly coupled to testing in another section. This complicates and
extends the certification process. Configuration management, system integration, and
long-term maintenance are also more complex and costly when there is a lack of
commonality and modularity in system building blocks.

• The importance of training is usually underestimated and the magnitude of the

training problem is increasing. An operator is often expected to use multiple systems
which behave completely differently, are equally complex with their own subtleties,
and which give slightly different answers. Operator turnover is rapidly reaching the
point where the time it takes to train an operator is a significant portion of the time
that the operator is assigned to his current tour of duty. Training is greatly reduced by
a consistent “look and feel” and by the ability to present to the operator only those
functions useful for his task.

• Don't reinvent the wheel. If a component already exists, it should probably be utilized

even if the component is not the optimum solution. Almost any module can be
improved but that is rarely the issue. Reuse of existing and proven software allows
focus of attention on mission uniqueness. Rather than concentrating scarce
development resources on recreating building blocks, the resources can be more
appropriately applied to customization and development of functionality that is not
already available.

• Utilize existing commercial standards, specifications, and products whenever

feasible. The commercial marketplace generally moves at a faster pace than the
military marketplace and advancements are generally available at a more rapid rate.
Use of commercial products has several advantages. Using already built items lowers
production costs. The probability of product enhancements is increased because the
marketplace is larger. The probability of standardization is increased because a larger
customer base drives it.

Assumptions and Objectives

DII COE I&RTS: Rev 3.0 January 1997 1-17

1.4 Assumptions and Objectives

The following assumptions apply to the DII COE:

• The DII COE will migrate to full compliance with the JTA standards profile6 when it is
fully defined. These standards promote an open systems architecture, the benefits of
which are assumed to be well known and generally accepted.

• The DII COE is to be hardware independent and will operate on a range of open

systems platforms running under standards-based operating systems. Program-driven
requirements, associated testing costs, and funding will dictate which specific
hardware platforms are given priority.

• Non-developmental items (NDIs), including both COTS and GOTS products, are the

preferred implementation approach.

• The DII COE is programming-language neutral. It does not state a preference of one
language over another, but leaves the selection of a programming language to higher-
level standards profile guidance and programmatic considerations. When a selection is
to be made, C++ is recommended over C while Ada95 is recommended over any
earlier versions. Any statements in the I&RTS which appear to state or imply a
preference for one language over another are unintentional.

COE development is driven by C4IFTW requirements as articulated by the services
through the appropriate DISA Configuration Control Board (CCB) process. Development
priorities are established by the CCB Chair and given to the DII COE Chief Engineer for
implementation.

The broad program drivers for the DII COE lead to a number of program objectives that
include those stated in the TAFIM, Volume 2:

1. Commonality: Develop a common core of software that will form the foundation for
Joint systems, initially for C4I and logistics systems.

2. Reusability: Develop a common core of software that is highly reusable to leverage

the investment already made in software development across the services and agencies.

3. Standardization: Reduce program development costs through adherence to industry

standards. This includes use of commercially available software components whenever
possible.

4. Engineering Base: Through standardization and an open architecture, establish a

large base of trained software/systems engineers.

6 JTA replaces the standards guidance in the TAFIM as per OSD directive (Subject: Implementation of the
DOD Joint Technical Architecture) dated 30 August 1996.

Assumptions and Objectives

1-18 January 1997 DII COE I&RTS: Rev 3.0

5. Training: Reduce operator training costs and improve operator productivity through
enforcement of a uniform human-machine interface, commonality of training
documentation, and a consistent “look and feel.”

6. Interoperability: Increase interoperability through common software and consistent

system operation.

7. Scalability: Through use of the segment concept and the COE architectural

infrastructure, improve system scalability so that COE-based systems will operate with
the minimum hardware resources required.

8. Portability: Increase portability through use of open systems concepts and standards.

This also promotes vendor independence for both hardware and software.

9. Security: Improve system security to the extent possible to protect the system from

deliberate attack and prevent unauthorized access to data and applications.

10. Testing: Reduce testing costs because common software can be tested and validated

once and then applied to many applications.

Document Scope

DII COE I&RTS: Rev 3.0 January 1997 1-19

1.5 Document Scope

This document describes the technical requirements for building and integrating software
components on top of the DII COE. It provides implementation details that describe, from
a software development perspective, the following:

• the Common Operating Environment (COE) approach to software reuse,
• the runtime execution environment,
• the Shared Data Environment (SHADE),
• the requirements for DII compliance,
• how to structure components to automate software integration, and
• how to electronically submit/retrieve software components to/from the software

repository.

Note: This document supersedes all earlier draft versions, presentations,
or working group notes. It specifically supersedes all previous
GCCS or DII Integration documents. All segments submitted to
DISA are required to be in accordance with this document.

Applicable Documents, Standards, and Specifications

1-20 January 1997 DII COE I&RTS: Rev 3.0

1.6 Applicable Documents, Standards, and Specifications

This document is one in a series of related documents that define development
requirements, system architecture, engineering tools, and implementation techniques.
Many of the documents cited are available on the World-Wide-Web, or contact the DISA
Configuration Management office for information on how to obtain the desired
documents.

Because the COE and COE-based systems are ongoing programs, enhancements and
additional features are developed on a regular basis. Documentation updates are regularly
released for each of the documents listed here. Be sure to always refer to the latest version
for the documents listed below, and be aware that many of the documents are being
modified and extended to address DII COE-based systems, not just GCCS or GCSS.

1. Architectural Design Document for the Defense Information Infrastructure (DII)
Common Operating Environment (COE), January 1996, DISA Center for
Computer Systems Engineering. This document is the definitive high-level technical
description of the COE. It documents the architectural design produced by the DISA
COE Design Working Group. It is useful for understanding how the client/server
model has been implemented within the DII COE.

2. C4ISR Architecture Framework, CISA-0000-104-96, Version 1.0, 7 June 1996,

C4ISR Integration Task Force (ITF) Integrated Architectures Panel. This
document presents an innovative definition of levels of interoperability. The DII COE
adopts these levels of interoperability and maps DII compliance to interoperability
levels.

3. Defense Information Infrastructure (DII) Common Operating Environment (COE)

Version 3.0 Baseline Specifications, 31 October 1996, DISA. This document
describes the detailed contents of each COE release and is updated with each
subsequent release. It includes the name and version of each segment in the COE as
well as COTS products, their version, and applicable patches.

4. Defense Information Infrastructure (DII) Common Operating Environment (COE)

System Requirements Specification, Draft, 1996, Institute for Defense Analysis.
Service and Agency requirements for a COE are defined in this document. It is a living
document that is updated as necessary to reflect ongoing requirements collection.

5. Defense Information Infrastructure Software Quality Compliance Plan, Draft,

1 January 1996, DISA. This document describes a plan for evaluating COE segments
from a software quality perspective. The plan includes static analysis of segment
source code to measure complexity, maintainability, risk, and other standard software
metrics.

6. Department of Defense Joint Technical Architecture, Final Coordination Draft 0.9,

17 June 1996, Joint Technical Architecture Working Group. The JTA has been
mandated by OSD directive for “... all emerging systems and systems upgrades. The

Applicable Documents, Standards, and Specifications

DII COE I&RTS: Rev 3.0 January 1997 1-21

JTA applies to all C4I systems and the interfaces of other key assets (e.g., weapons
systems, sensors, office automation systems, etc.) with C4I systems. The JTA also
applies to C4I Advanced Concept Technology Demonstrations and other activities that
lead directly to the fielding of operational C4I capabilities.” The JTA stipulates DII
compliance as part of its requirements. It also “... replaces the standards guidance in
the Technical Architecture Framework for Information (TAFIM) currently cited in
DOD Regulation 5000.2-R.”

7. Department of Defense Technical Architecture Framework for Information

Management, Volumes 1-8, Version 3.0 (Draft), 30 September 1995, DISA Center
for Architecture. This multi-volume document defines a standards profile and the
DOD Technical Reference Model (TRM) for information management systems. This
document set also presents a high-level technical architecture that is useful for
classifying levels within a system’s infrastructure. The TRM distinguishes between the
hardware platform, hardware-specific services, supporting infrastructure services, and
mission applications.

8. Information Technology - Portable Operating System Interface for Computer

Environments (POSIX) - Part 1: System Application Program Interface (API) [C
Language], ISO 9945-1, 1990; Information Technology - Portable Operating System
Interface for Computer Environments (POSIX) - Part 2: Shell and Utilities,
ISO 9945-2, 1993. The POSIX documents are an ongoing standardization effort that
is attempting to define a common set of low-level functions, especially at the operating
system level, across all hardware platforms and operating systems.

9. User Interface Specification for the Defense Information Infrastructure (DII),

Version 2.0, 1 April 1996, DISA. This document, sometimes called the DII Style
Guide, defines the “look and feel” of the user interface for COE-based systems. The
style guide provides specifications for applications using Motif and Windows GUIs; a
future version of the document will include Windows NT and Web-based applications.

Document Structure

1-22 January 1997 DII COE I&RTS: Rev 3.0

1.7 Document Structure

This document is structured to correspond to the typical phases in a development cycle,
beginning with how a developer builds a segment, submits it to the government, and then
how it is fielded to an operational site. Chapter 1 of this document is an overview of the
DII COE, a brief history of its development, and applicable documents and standards.

Chapter 2 gives a brief technical description of the COE, its components, and the
principles that determine whether a software component is part of the COE or is a mission
application. Selection of the particular components to populate the COE determine what
applications can be supported, but the principles which define a COE are not application-
specific. Chapter 2 also describes the important concept of DII compliance and maps
compliance to levels of interoperability.

Chapter 3 is an overview of the development process. It includes a discussion of the
process from segment registration through development, submission to DISA, integration,
and site installation. The tools provided in the COE and how they are used is key to
understanding automated integration.

Chapter 4 describes SHADE and other database considerations within the context of the
COE. Databases are heavily used within COE-based systems, and early consideration of
their structure, how they are to be used, and how they are to fit into the overall system is
crucial in building a successful system.

Chapter 5 describes the runtime environment as it exists for operational sites, the disk
directory and file structure fundamental to the COE, and the procedures for integrating
segments into a runtime environment. Requirements detailed in Chapter 5 must be
carefully followed so that applications will not interfere with each other, and so that
integration is largely an automated process.

Chapters 6, 7, and 8 are new with this version of the I&RTS. They describe extensions for
the COE reference implementation that runs on NT platforms, extensions to the COE to
support Web applications, and support for DCE applications respectively.

Chapter 9 provides some suggestions for setting up a software development environment.
Few requirements are stipulated for a development environment, allowing as much
freedom for developers and program managers as possible.

Chapter 10 describes two important components for both developers and operational sites:
the online COE Software Distribution Management System (SDMS), and the COE
Information Server (CINFO). These components are used to disseminate and manage
software, documentation, meeting notices, and general information of importance to the
COE community.

Appendix A lists the currently supported COE configurations. The appendix includes
supported hardware, and supported COTS versions. It also describes the Reference

Document Structure

DII COE I&RTS: Rev 3.0 January 1997 1-23

Implementation program whereby vendors may obtain low-level components of the COE
and port them to their hardware platforms.

Appendix B presents a checklist for developers to use as an aid in determining the degree
to which a segment is DII-compliant. As described in the appendix, some conditions are
mandatory, others require a migration strategy to show conformance, while others are
optional but recommended. This appendix has been reworded and reformatted to be
clearer and easier to apply, but is otherwise unchanged from the previous I&RTS version.

Appendix C describes the automated tools provided with the COE. A number of new tools
are provided to simplify the segment development and maintenance life cycle. The
philosophy is to provide developers with access to the same tools that integrators will use
so that segment integration is performed, as much as possible, by segment developers
prior to segment delivery. Integration of segments with the COE is the responsibility of
the segment developer. Government integrators serve as validators only in this process to
ensure that developers produce DII-compliant segments. In addition to segment
validation, government integrators perform system-level integration of all segments
submitted by all developers to create the target system.

Appendix D gives additional information on the online repository (SDMS) and the
information server (CINFO).

Segment registration is required in order to identify potential conflicts as early in the
development cycle as possible. Appendix E describes how to register a segment and what
information is required for registration.

The remaining appendices provide additional information on products within the COE,
such as the RDBMS, that are either vendor-specific or product-version-specific.

Finally, a List of Acronyms used in the I&RTS are presented and a Glossary of frequently
encountered terms. The acronyms and terms are encountered throughout DII COE-related
documents.

Document Structure

1-24 January 1997 DII COE I&RTS: Rev 3.0

This page is intentionally blank.

